#########################################
### IMPORT LIBRARIES AND SET VARIABLES
#########################################
#Import python modules
from datetime
import
datetime
#Import pyspark modules
from pyspark.context
import
SparkContext
import
pyspark.sql.functions as f
#Import glue modules
from awsglue.utils
import
getResolvedOptions
from awsglue.context
import
GlueContext
from awsglue.dynamicframe
import
DynamicFrame
from awsglue.job
import
Job
#Initialize contexts and session
spark_context = SparkContext.getOrCreate()
glue_context = GlueContext(spark_context)
session = glue_context.spark_session
#Parameters
glue_db =
"glue-demo-edureka-db"
glue_tbl =
"read"
s3_write_path =
"s3://glue-demo-bucket-edureka/write"
#########################################
### EXTRACT (READ DATA)
#########################################
#Log starting time
dt_start = datetime.now().strftime(
"%Y-%m-%d %H:%M:%S"
)
print(
"Start time:"
, dt_start)
#Read movie data to Glue dynamic frame
dynamic_frame_read = glue_context.create_dynamic_frame.from_catalog(database = glue_db, table_name = glue_tbl)
#Convert dynamic frame to data frame to use standard pyspark functions
data_frame = dynamic_frame_read.toDF()
#########################################
### TRANSFORM (MODIFY DATA)
#########################################
#Create a decade column from year
decade_col = f.floor(data_frame[
"year"
]/
10
)*
10
data_frame = data_frame.withColumn(
"decade"
, decade_col)
#Group by decade: Count movies, get average rating
data_frame_aggregated = data_frame.groupby(
"decade"
).agg(
f.count(f.col(
"movie_title"
)).alias(
'movie_count'
),
f.mean(f.col(
"rating"
)).alias(
'rating_mean'
),
)
#Sort by the number of movies per the decade
data_frame_aggregated = data_frame_aggregated.orderBy(f.desc(
"movie_count"
))
#Print result table
#Note: Show function is an action. Actions force the execution of the data frame plan.
#With big data the slowdown would be significant without cacching.
data_frame_aggregated.show(
10
)
#########################################
### LOAD (WRITE DATA)
#########################################
#Create just
1
partition, because there is so little data
data_frame_aggregated = data_frame_aggregated.repartition(
1
)
#Convert back to dynamic frame
dynamic_frame_write = DynamicFrame.fromDF(data_frame_aggregated, glue_context,
"dynamic_frame_write"
)
#Write data back to S3
glue_context.write_dynamic_frame.from_options(
frame = dynamic_frame_write,
connection_type =
"s3"
,
connection_options = {
"path"
: s3_write_path,
#Here you could create S3 prefixes according to a values in specified columns
#
"partitionKeys"
: [
"decade"
]
},
format =
"csv"
)
#Log end time
dt_end = datetime.now().strftime(
"%Y-%m-%d %H:%M:%S"
)
print(
"Start time:"
, dt_end)